Smoke Radiative Forcings over South America and Africa in 1998

R.M. Welch, X. Li, S.A. Christopher

Department of Atmospheric Science University of Alabama in Huntsville Huntsville, AL 35806

CERES Team Meeting, Spring 2000

Objective

. Analyze biomass burning season over Africa and South America in 1998 using measurements from TRMM platform

. Estimate smoke radiative forcings both at TOA and at surface

Satellite Data

- . Level 1B VIRS, 08/98
- . CERES ES8 product, 08/98

Study Areas

South America: 30S – 0, 70W – 40W

Africa: 30S - 5S, 10E - 40E

Methodology

- . Identify smoke pixels from VIRS images using spectral multi-thresholding technique
- . Using τ from sunphotometers, $\omega_{\rm o}$ values of smoke are retrieved from AVHRR during SCAR-B. The results are in good agreement with those from aircraft and ground-based measurements. $\omega_{\rm o}$ values range 0.83-0.92
- . Assuming ω_{0} of 0.89, τ is retrieved from VIRS for smoke
- . A smoke ADM is constructed using discrete—ordinate model. The RMS error between SW fluxes from CERES ES-8 product and those converted from CERES radiances using smoke ADM is about 12 W/m²

- . Calculate TOA SW fluxes for smoke from CERES radiances using smoke ADM. Estimate TOA smoke radiative forcing
- . Modified Fu–Liou model for smoke aerosols. Calculate SFC downward SW flux over smoke using measured τ and ω_0 . Compared to pyranometer measurements; the RMS errors are within 30 W/m²
- . Using Fu–Liou model, calculate SFC and TOA SW fluxes with ω_0 and retrieved τ
- . Calculate surface downward and TOA smoke radiative forcing
- . Assuming τ constant, calculate daily–mean smoke forcings at TOA and at surface

South America

Major ecosystems where smoke prevails: Forest, Savanna, Grassland

Africa

Major ecosystems where smoke prevails: Grassland, Savanna, and Forest

Instantaneous Shortwave Aerosol Radiative Forcing(SWARF) as a function of τ over South America


```
τ(0.64 \mu m) : 0.4 - 1.8 TOA SWARF : -19 - -70 Wm-2 TOA SWARF / τ : -36.4 Wm-2 SFC downward SWARF: 110 - 380 Wm-2 SFC downward SWARF/τ: 190 Wm-2
```

Instantaneous Shortwave Aerosol Radiative Forcing(SWARF) as a function of τ over Africa


```
\tau(0.64 \ \mu m) : 0.4 - 1.8 TOA SWARF : -20 - -90 Wm-2
```

TOA SWARF/ τ : -50 Wm-2

SFC downward SWARF: 100 - 360 Wm-2

SFC downward SWARF/τ: 186 Wm-2

Sensitivity

- ω=0.825, τ=0.78, F_{toa} =176 W/m², $F_{sfc\ dn}$ =693 W/m²
- ω increases to 0.854, τ decreases to 0.60 F_{toa} =176 W/m², F_{sfc_dn} =752 W/m²
- ω decreases to 0.795, τ increases to 1.06 F_{toa} =177 W/m², F_{sfc} dn =615 W/m²

Diurnal variation of TOA and SFC downward SWARFs

(Assuming constant τ during a day)

 τ =1.38, TOA SWARF: –19.1, SFC SWARF: 112.7 τ =1.86, TOA SWARF: –21.1, SFC SWARF: 138.2 τ =0.90, TOA SWARF: –15.7, SFC SWARF: 84.0

Retrieved \(\tau\), daily-mean TOA SWARFs and surface downward SWARF over South America on 08/29

Retrieved \(\tau\), daily-mean TOA SWARFs and surface downward SWARF over Africa on 08/10

Daily-mean TOA SWARF and SFC downward SWARF versus τ

- . TOA SWARFs increase with increasing τ and ω_{0} and with decreasing surface albedo
- . SFC downward SWARFs increase with increasing τ and with decreasing ω_{o}

Summary

- . Biomass burning is more intense over South America than over Africa
- . Instantaneous TOA SWARF/τ (Wm-2): South America: -36.4, Africa: -50.0.

Instantaneous SFC downward SWARF/τ: South America: 190, Africa: 186

. daily-mean SWARFs (Wm-2):

 τ = 0.75, TOA SWARF: -13.3

SFC downward SWARF: 71.7

 τ = 1.00, TOA SWARF: -15.5

SFC downward SWARF: 88.0

On 08/29 over South America,

τ ranges: 0.5 – 2.0 daily-mean TOA SWARF: -10 – -30 W/m2 daily-mean SFC downward SWARF: 60 – 180 W/m2

In this procedure, SFC SWARF is sensitive to the accuracy of assumed single scattering albedo values.